Tuesday 12th December 2017 - at 16:30
Aula Seminari “-1” – Dipartimento di Matematica

Valentina Franceschi
(INRIA Paris and LJLL Université Pierre et Marie Curie Paris)

ESSENTIAL SELF-ADJOINTNESS OF SUB-LAPLACIANS

ABSTRACT:

The aim of this seminar is to present recent results about essential self-adjointness of sub-Laplacians. For a sub-Riemannian manifold M endowed with a volume measure ω, this is a property of the sub-Laplacean Δ_ω as an operator in $L^2(M)$ encoding the behavior of heat diffusion, wave propagation and quantum particles through M.

We present two types of results in this context. The first one, obtained in [2], consists in a self-adjointness criterion for sub-Laplacians on complete sub-Riemannian manifolds, defined with respect to singular measures. As a consequence, we prove that the sub-Laplacean defined with respect to an intrinsic measure (Poppi's measure) is essentially self-adjoint on the equiregular connected components of a sub-Riemannian manifold, under mild regularity assumptions on the singular region and when the latter does not contain characteristic points. This goes in the direction of a conjecture formulated by Boscain and Laurent in [1] and generalizes [3].

In the second part of the seminar we will present an ongoing work concerning the essential self-adjointness of the pointed sub-Laplacean, i.e., Δ defined on $C_c^\infty(M \setminus \{p\})$, $p \in M$. This highlights a strong difference with respect to the Riemannian case.

Both results follow by the study of suitable sub-Riemannian Hardy-type inequalities that have an independent interest.

Based on joint works with U. Boscain (CNRS & LJLL, Paris, France), D. Prandi (CNRS, CentraleSupélec, Gifves-sur-Yvette, France) and L. Rizzi (CNRS & Institut Fourier, Grenoble, France).

REFERENCES

Contact person: Andrea Pinamonti