Exploring nanomaterials with multiscale simulations for interface and interphase engineering

27 gennaio 2017
27 January 2017 - at 15.30
Contatti: 
Dipartimento di Fisica, Segreteria
via Sommarive, 14 - 38123 Povo (Trento)
Tel. 
+39 0461 281504 - 1575 - 2042 - 1545
Fax 
+39 0461 281696

Venue: Room A211, Polo Scientifico e Tecnologico “Fabio Ferrari” - Povo1
At: 15.30

  • Prof. Giuseppe Milano - Università di Salerno, Dipartimento di Chimica e Biologia

Abstract:
Current developments and coarse-Graining schemes aimed to achieve models retaining molecular specificity will be described. To this aim, models combining particle and continuum representations are proposed. In particular, descriptions based on combination of molecular models and field theory [1] or molecular models and finite elements methods (FEM) [2] will be described. Hybrid models, due to their computational efficiency, are gaining popularity (for recent reviews [3-5]). The hybrid particle-field technique combines molecular dynamics (MD) and self consistent field theory (SCF). The main feature of the hybrid MD-SCF method is that the evaluation of the nonbonded forces between particle pairs is replaced by an evaluation of an external potential dependent on the local density. This framework allows to develop coarse-grained models with chemical specificity but at the same time, using an efficient parallelization scheme,[6] opens the possibility to simulate large-scale systems. Current developments and several applications of MD-SCF technique, ranging from self-assembled structures[7] to polymer melts [8], to rational design of polymer composites[9] and a microscopic description of macroscopic properties [2,10] will be described.
Keywords: Polymer Composites, Gas Sensors, Biopolymers, Molecular Simulations

References
[1] G. Milano, T. Kawakatsu J. Chem. Phys. 2009, 130, 214106. J. Chem. Phys. 2010,133,
[2] M. Byshkin, F. Buonocore, A. Di Matteo, and G. Milano Sensors and Actuators B in press
[3] P. G. Kalatur In Polymer Science: A Comprehensive Reference; Matyjaszewski, K.,Moller, M., Eds.; Elsevier:Amsterdam, 2012, p 417.
[4] K. M. Langner, G. J. A. Sevink Soft Matter 2012, 8, 5102.
[5] G. Milano, T. Kawakatsu, A. De Nicola, Physical Biology 2013, 10, 045007.
[6] Y. Zhao, A. De Nicola, T. Kawakatsu, and G. Milano J. Comp. Chem. 2012, 33, 868.
[7] A. De Nicola, T. Kawakatsu, G. Milano Macromol. Chem. Phys. 2013, 17, 1940.
[8] A. De Nicola, T. Kawakatsu, G. Milano, J. Chem. Theory Comput., 2014, 10 (12), pp 5651- 5667.
[9] A. De Nicola, R, Avolio, F. Della Monica, G. Gentile, M. Cocca, C. Capacchione, M. E. Errico and G. Milano RSC Advances 2015, 5, 71336.
[10] Y. Zhao, M. Byshkin, Y. Cong, T. Kawakatsu, L. Guadagno, A. De Nicola, N. Yu, G. Milano and B. Dong, Nanoscale 2016, 8, 15538..

 

Download 
application/pdfLocandina seminario Milano(PDF | 1023 KB)