Abstract:

The main object of our research is the notion of “intrinsic regular surfaces” introduced and studied by Franchi, Serapioni, Serra Cassano in a Carnot group G. More precisely, an intrinsic regular hypersurface (i.e. a topological codimension 1 surface) $S \subset G$ is locally defined as a non critical level set of a C^1 intrinsic function. In a similar way, a k-codimensional intrinsic regular surface is locally defined as a non critical level set of a C^1 intrinsic vector function. Through Implicit Function Theorem, S can be locally represented as an intrinsic graph by a function ϕ. Here the intrinsic graph is defined as follows: let V and W be complementary subgroups of G, then the intrinsic graph of $\phi : W \to V$ is the set $\{A \cdot \phi(A) | A \in W\}$, where \cdot indicates the group operation in G. A fine characterization of intrinsic regular surfaces in Heisenberg groups (examples of Carnot groups) as suitable 1-codimensional intrinsic graphs has been established in [1]. We extend this result in a general Carnot group introducing an appropriate notion of differentiability, denoted uniformly intrinsic differentiability, for maps acting between complementary subgroups of G. Finally we provide a characterization of intrinsic regular surfaces in terms of existence and continuity of suitable ‘derivatives’ of ϕ introduced by Serra Cassano et al. in the context of Heisenberg groups. All the results have been obtained in collaboration with Serapioni.

Supervisor:

Raul Paolo Serapioni