Bioprinting 3D vascularized tissue flaps

6 April 2022
Start time 
2:30 pm
Target audience: 
UniTrento students
Contact details: 
Prof. Shulamit Levenberg - Faculty of Biomedical Engineering, Technion, Israel


Engineering vascularized constructs represents a key challenge in tissue engineering. Sufficient vascularization in engineered tissues can be achieved through coordinated application of improved biomaterial systems with proper cell types. We have shown that vessel network maturity levels and morphology are highly regulated by matrix composition and analyzed the vasculogenic dynamics within the constructs. We also explored the effect of mechanical forces on vessels organization and demonstrated that morphogenesis of 3D vascular networks is regulated by tensile forces. Revealing the cues controlling vascular network properties and morphology can enhance tissue vascularization and improve graft integration prospects.
Creating complex vascular networks with varying vessel sizes is the next challenge in engineering vascularized tissue flaps. 3D bioprinting, the controlled and automatized deposition of biomaterials and cells, represents a very attractive approach to solve this issue. This technique allows for combining different bioinks in an organized fashion to attain native-tissue mimicking structures. We showed that bioprinting macro-vessels with self-assembled micro-vessels allows fabrication of multiscale vascular networks.


Participation is free but registration is compulsory.

Should you need assistance, please contact biotech.dii [at]

Type F credits

Students of the Master courses of the Department who intend to claim ECTS type "F" from the seminars are required to attend at least 10 lectures chosen from this series and the Bilateral seminar series organized with Amrita Vishwa Vidyapeetham University.