Fibrations on extremal general surfaces

February 10, 2016
Versione stampabile

Luogo: Dipartimento di Matematica, via Sommarive, 14 - Povo (TN) - Aula Seminari
Ore 11:00


  • Alejandra Fabiola Huitrado Mora (Universidad Nacional Autónoma de México, Campus Morelia)

Let f:X -->P^1 be a semistable non isotrivial fibration of genus g defined on the general type surface X.
A classical issue is determining a lower bound for the number s of singular fibers of f.
Considering the Noether's inequality
2p_g-4<= K_S^2
the purpose of my work is to prove what Tan and Tu conjectured in the paper "On complex surfaces with 5 or 6 semistable singular fibers over P^1" (if X is of general type then s>=7) at least in some extremal cases like K_S^2=2, p_g=3 and K_S^2=1, p_g=2.

Referente: Eduardo Luis Sola Conde