BPS invariant from non Archimedean integrals
Abstract
We consider moduli spaces Mβ,χ of one-dimensional semistable sheaves on del Pezzo and K3 surfaces supported on ample curve classes. Working over a non-archimedean local field F, we define a natural measure on the F-points of such moduli spaces. We prove that the integral of a certain naturally defined gerbe on Mβ,χ with respect to this measure is independent of the Euler characteristic. Analogous statements hold for (meromorphic or not) Higgs bundles. Recent results of Maulik-Shen and Kinjo-Coseki imply that these integrals compute the BPS invariants for the del Pezzo case and for Higgs bundles. This is a joint work with Giulio Orecchia and Dimitri Wyss.
Eventi passati
È possibile consultare gli eventi del precedente ciclo alla pagina dedicata