Seminario

A variational theory of convolution-type functionals

Seminario periodico del Dipartimento di Matematica
22 marzo 2023
Orario di inizio 
14:30
PovoZero - Via Sommarive 14, Povo (Trento)
Aula Seminari "-1"
Destinatari: 
Comunità universitaria
Comunità studentesca UniTrento
Partecipazione: 
Ingresso libero
Referente: 
Andrea Pinamonti, Andrea Marchese, Giorgio Saracco, Gian Paolo Leonardi
Contatti: 
Università degli Studi Trento 38123 Povo (TN) - Staff Dipartimento di Matematica
+39 04 61/281508-1625-1701-3786-1980
Speaker: 
Nadia Ansini (Roma Sapienza)

Abstract

We provide a general treatment of a class of functionals modeled on convolution energies with kernel having finite p-moments. Such model energies approximate the p-th norm of the gradient as the kernel is scaled by letting a small parameter epsilon tend to 0. We first provide the necessary functional-analytic tools to show coerciveness of families of such functionals with respect to strong Lp convergence. The main result is a compactness and integral-representation theorem which shows that limits of convolution-type energies are local integral functionals with p-growth defined on a Sobolev space. This result is applied to obtain periodic homogenization results, to study applications to functionals defined on point-clouds, to stochastic homogenization and to the study of limits of the related gradient flows.

Eventi passati

È possibile consultare gli eventi del precedente ciclo alla pagina dedicata