Seminario

Comparison Principles for Stochastic Volterra Equations

Seminario periodico del Dipartimento di Matematica
8 novembre 2023
Orario di inizio 
17:00
PovoZero - Via Sommarive 14, Povo (Trento)
Aula seminari "1" (Povo 0) e via Zoom (contattare dept.math@unitn.it per le credenziali)
Organizzato da: 
Dipartimento di Matematica
Destinatari: 
Comunità universitaria
Comunità studentesca UniTrento
Partecipazione: 
Ingresso libero
Online
Referente: 
Prof. Luigi Amedeo Bianchi, Prof. Stefano Bonaccorsi, Prof. Michele Coghi
Contatti: 
Università degli Studi Trento 38123 Povo (TN) - Staff Dipartimento di Matematica
+39 04 61/281508-1625-1701-3898-1980-1511
Speaker: 
Ole Cañadas (Dublin City University)

Abstract

Motivated by rough volatility models in mathematical finance, stochastic  Volterra equations (SVEs)

\[
X_t = g(t) + \int_0^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)}b(X_s)\,d s
+ \int_0^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)}\sigma(X^{i}_s)\,d B_s
\]

with $\alpha\in(1/2,1)$ and $\sigma$ H\"older continuous of order $\eta\in[1/2,1]$ have received a great deal of study in recent years.
However, they fall neither into the class of semimartingales nor into the class of Markov processes. Therefore, the classical framework as the
It\^o formula and classical semigroup theory is not applicable. In this talk, we are concerned with Comparison Principles for stochastic
Volterra equations.
 
That is, suppose

\[
X^{i}_t = g_i(t) + \int_0^t K(t-s)b_i(X^{i}_s)\,d s + \int_0^t
K(t-s)\sigma(X^{i}_s)\,d B_s,\quad i=1,2,
\]

with $g_1\leq g_2$ then $\mathbb{P}(X^1_t\leq X^2_t,\,t\geq0)=1.$ However, in general, SVEs with non-Lipschitz diffusion coefficients
suffer from the lack of pathwise uniqueness and a desired comparison principle is out of reach (since comparison principles imply pathwise
uniqueness). To address this problem, we construct a coupling satisfying a comparison principle. We prove this under different assumptions on the
initial data $(g_i,K,b_i,\sigma)$ and discuss an example.

This is joint work with Martin Friesen (Dublin City University).