Seminario

The Dirichlet--Ferguson Diffusion on the space of probability measures over a closed Riemannian manifold

Seminario periodico del Dipartimento di Matematica
28 novembre 2023
Orario di inizio 
14:30
PovoZero - Via Sommarive 14, Povo (Trento)
Aula Seminari "1"
Destinatari: 
Comunità universitaria
Comunità studentesca UniTrento
Partecipazione: 
Ingresso libero
Referente: 
Andrea Pinamonti, Andrea Marchese, Paolo Bonicatto
Contatti: 
Università degli Studi Trento 38123 Povo (TN) - Staff Dipartimento di Matematica
+39 04 61/281508-1625-1701-3786-1980
Speaker: 
Lorenzo Dello Schiavo (ISTA AUSTRIA)

Abstract

We construct a diffusion process on the $L^2$-Wasserstein space $P_2(M)$ over a closed Riemannian manifold $M$. The process, which may be regarded as a candidate for the Brownian motion on $P_2(M)$, is associated with the Dirichlet form induced by the $L^2$-Wasserstein gradient and by the Dirichlet--Ferguson random measure with intensity the Riemannian volume measure on $M$. We discuss the closability of the form via an integration-by-parts formula, which allows explicit computations for the generator and a specification of the process via a measure-valued martingale problem. We comment how the construction is related to previous work of von Renesse--Sturm on the Wasserstein Diffusion, of Kondratiev--Lytvynov--Vershik on diffusions on the cone of Radon measures, and of Konarovskyi--von Renesse on the Modified Massive Arratia Flow. Ann. Probab. 50(2):591–648, 2022.

Eventi passati

È possibile consultare gli eventi del precedente ciclo alla pagina dedicata