On the curvature of rectifiable varifolds with bounded mean curvature

7 novembre 2019
Versione stampabile

Luogo: Povo Zero, via Sommarive 14 (Povo) - Sala Seminari "-1"
Ore: 14:30


  • Mario Santilli (University of Augsburg)


In the first part of the talk I introduce a notion of normal bundle and second fundamental form for all closed subsets of the Euclidean space. Then I employ these notions to study the curvature properties of rectifiable varifolds with bounded distributional mean curvature and uniform lower bound on the density. In particular, I obtain the Coarea formula for the generalized Gauss map of a varifold in the aforementioned class (extending a classical result valid for smooth submanifolds) and prove that the support of such a varifold must be C2 –rectifiable.

Referente: Gian Paolo Leonardi