Seminario

Breaking conjectures in combinatorics with graph neural networks and reinforcement learning

Seminario periodico del Dipartimento di Matematica
25 maggio 2023
Orario di inizio 
14:00
Polo Ferrari 2 - Via Sommarive 9, Povo (Trento)
Aula B112 – Povo2 e online via Zoom (contattare dept.math@unitn.it per le credenziali)
Destinatari: 
Comunità universitaria
Comunità studentesca UniTrento
Partecipazione: 
Ingresso libero
Online
Email per prenotazione: 
Referente: 
Proff. Luigi Amedeo Bianchi, Gian Paolo Leonardi
Contatti: 
Università degli Studi Trento 38123 Povo (TN) - Staff Dipartimento di Matematica
+39 04 61/281508-1625-1701-1980-3898-1511
Speaker: 
Francesco Morandin (Università di Parma)

Abstract

I will present some recent results on using reinforcement learning to find explicit constructions and counterexamples to several open conjectures in graph theory. Reinforcement learning is a branch of machine learning that deals with learning optimal actions in an environment based on feedback and rewards. I will explain how a reinforcement learning algorithm can be used to generate graphs that satisfy or violate certain properties. I will also discuss how using graph neural networks instead of fully connected networks can significantly improve the performance and scalability of this approach. Graph neural networks are neural networks that operate on graph structures and can capture their features and relations. This talk is based on the paper Constructions in combinatorics via neural networks by Adam Zsolt Wagner and is a joint work with Renato Faraone.